# Multifidelity Robust Aeroelastic Design, Phase I



Completed Technology Project (2011 - 2011)

## **Project Introduction**

Nielsen Engineering & Research (NEAR) proposes a new method to generate mathematical models of wind-tunnel models and flight vehicles for robust aeroelastic analysis and design. These models provide a unified description applicable to CFD steady and unsteady aerodynamics, reduced-order CFD approaches, flexible structures and active control systems, and can accommodate probabilistic aerodynamics and aeroelastics. NEAR's offering is based on probabilistic metamodels which are supported by analyses and data at all available levels of fidelity and which are dynamically updated based on multifidelity expected improvement concepts. The proposed software will help reduce the design and life-cycle cost of next-generation high-efficiency flight vehicle systems and revolutionary aerospace vehicles, and will help attain better aeroelastic designs, by providing a better understanding of how the design variables interact and affect each other under the influence of uncertainty, and by incorporating these interactions early in the design to reduce risk.

### **Primary U.S. Work Locations and Key Partners**





Multifidelity Robust Aeroelastic Design, Phase I

### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Project Transitions           | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 3 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



### Small Business Innovation Research/Small Business Tech Transfer

# Multifidelity Robust Aeroelastic Design, Phase I



Completed Technology Project (2011 - 2011)

| Organizations<br>Performing Work     | Role                       | Туре           | Location                   |
|--------------------------------------|----------------------------|----------------|----------------------------|
| Nielsen Engineering & Research, Inc. | Lead<br>Organization       | Industry       | Santa Clara,<br>California |
| Langley Research<br>Center(LaRC)     | Supporting<br>Organization | NASA<br>Center | Hampton,<br>Virginia       |

| Primary U.S. Work Locations |          |
|-----------------------------|----------|
| California                  | Virginia |

### **Project Transitions**

0

February 2011: Project Start



September 2011: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/138338)

# Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

### **Lead Organization:**

Nielsen Engineering & Research, Inc.

### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

# **Project Management**

#### **Program Director:**

Jason L Kessler

#### **Program Manager:**

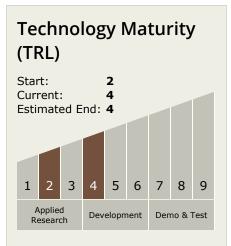
Carlos Torrez

### **Principal Investigator:**

Patrick H Reisenthel

### **Co-Investigator:**

Patrick Reisenthel




### Small Business Innovation Research/Small Business Tech Transfer

# Multifidelity Robust Aeroelastic Design, Phase I



Completed Technology Project (2011 - 2011)



## **Technology Areas**

#### **Primary:**

TX15 Flight Vehicle Systems
TX15.1 Aerosciences
TX15.1.3 Aeroelasticity

# **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

